Skip to main content
 
#PLATAFORMAS TEMÁTICAS INTERDISCIPLINARES #NATURALEZA #Desarrollo sostenible #Clima #Ciclo del carbono

Almacenar CO2 bajo tierra podría ser una solución segura para mitigar el cambio climático, según un estudio del CSIC

Investigadores del IDAEA e IMEDEA (CSIC-UIB) han mostrado el bajo riesgo de escape que supondría la inyección de toneladas de carbono en el subsuelo

Fecha de noticia:

Un estudio liderado por el Consejo Superior de Investigaciones Científicas (CSIC) muestra que inyectar miles de millones de toneladas de CO2 atmosférico (dióxido de carbono) bajo tierra tiene un riesgo bajo de escape en la superficie. Los resultados del estudio, publicado en la revista Geophysical Research Letters, indica que la tecnología de almacenamiento geológico de CO2 puede comenzar a utilizarse de forma segura para mitigar el cambio climático.

“Según las simulaciones, el CO2 permanecería en las profundidades del subsuelo durante millones de años, incluso si las rocas suprayacentes de baja permeabilidad se fracturaran”, explica Iman Rahimzadeh Kivi, investigador del CSIC en el Instituto de Diagnóstico Ambiental y Estudios del agua (IDAEA-CSIC) y primer autor del estudio. En estudio también ha participado el Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC-UIB) y han colaborado el Laboratorio Nacional Lawrence Berkeley y la Universidad de Illinois en Urbana-Champaign. Esta investigación interdisciplinar ha desarrollado una nueva metodología para calcular la probabilidad de escape del CO2, considerando miles de millones de toneladas del CO2 inyectado bajo tierra durante millones de años, una escala de volumen y tiempo mucho mayor que todo lo que se ha investigado hasta ahora.

“El objetivo del almacenamiento del CO2 es tomar este gas de efecto invernadero de industrias con dificultades para reducir emisiones e inyectarlo a gran profundidad bajo tierra. Para que el gas permanezca en la profundidad debe inyectarse en rocas con alta permeabilidad y porosidad, como el gres. Sin embargo, existe un riesgo de escape del gas, dado que el CO2 es menos denso que el agua salina que llena los poros a gran profundidad, por lo que puede flotar hacia arriba y volver a filtrarse hacia la superficie”, Rahimzadeh Kivi.

Para calcular el riesgo de escape del CO2, los investigadores predijeron el flujo de gas en la superficie después de su inyección a 1.550 metros de profundidad (la habitual para almacenar el gas bajo tierra), utilizando modelos numéricos de transporte en dos escenarios diferentes. “Nuestras predicciones muestran que, en el mejor escenario, cuando las propiedades de la roca subterránea permanecen intactas, el CO2 sólo subiría 200 metros después de un millón de años. En el peor escenario, cuando las rocas presentan un gran número de fracturas, el CO2 subiría 300 metros”, indica Víctor Vilarrasa, investigador del IMEDEA (CSIC-UIB) y principal autor del estudio. "Esto quiere decir que incluso en el peor escenario posible, el CO2 se mantendría indefinidamente a 1.250 metros de profundidad durante millones de años", recalca Rahimzadeh Kivi.

Los autores subrayan que este estudio es relevante para aumentar la confianza en la seguridad del almacenamiento de CO2 bajo tierra, para conseguir la neutralidad de carbono y mitigar los efectos de la emergencia climática. “Los escenarios propuestos por el Grupo Intergubernamental sobre el Cambio Climático (IPCC) para obtener las cero emisiones, e incluso la eliminación neta del carbono de la atmósfera, requieren el almacenamiento geológico de CO2. Y este estudio demuestra que el almacenamiento permanente de CO2 se puede conseguir de forma segura”, concluye Vilarrasa.

Este trabajo se ha desarrollado en el marco del proyecto EASY GEO-CARBON (PCI2021-122077-2B) financiado por el MCIN/AEI/10.13039/501100011033 y por European Union NextGenerationEU/PRTR.

Alicia Arroyo- IDAEA Comunicación/ Ana Bonilla- IMEDEA Comunicación/ CSIC Comunicación

comunicacion@csic.es

Referencia científica:

Kivi, I.R., Makhnenko, R.Y., Oldenburg, C.M., ‎Rutqvist, J. and Vilarrasa, V., 2022. Multi-layered systems for permanent geologic storage of CO2 at the gigatonne scale. Geophysical Research Letters, 49 (24) e2022GL100443. DOI: 10.1029/2022GL10044

Noticias relacionadas