Skip to main content
 
#Espacio #Planetas #Geología

El planeta enano Ceres se contrajo originando grandes fallas

Fecha de noticia:

El planeta enano Ceres, entre las órbitas de Marte y Júpiter, es más complejo de lo que se pensaba. Una investigación con participación del Consejo Superior de Investigaciones Científicas (CSIC) ha demostrado la presencia de fallas inversas, un fenómeno producido por la contracción de las capas superiores, lo que implica cambios de volumen en este cuerpo astronómico en algunas fases de su historia. El estudio se publica en Nature Astronomy.

A lo largo de la historia de Ceres han sido importantes los movimientos de contracción y no solo los de extensión, como se pensaba hasta ahora, según una investigación liderada por la Universidad Complutense de Madrid que ha demostrado la existencia de fallas inversas en este objeto.

Ceres, de cerca de 1.000 kilómetros de diámetro entre las órbitas de Marte y Júpiter, es un cuerpo híbrido de hielo y roca que alberga un océano interno de agua líquida. Como esta al congelarse se expande, se había dado por hecho que el enfriamiento progresivo de Ceres había causado extensión de la superficie como proceso de deformación predominante en su historia.

Las fallas inversas se producen por contracción de las capas superiores de un planeta. El hallazgo de estas aquí “implica que la contracción debida a la diferenciación de Ceres -separación del material por distintos tipos de composición- y al enfriamiento de las rocas han dominado los cambios de volumen de este planeta enano en algunas fases de su historia, aunque actualmente parece que la extensión es más importante”, explica Javier Ruiz Pérez, primer autor del trabajo e investigador del departamento de Geodinámica, Estratigrafía y Paleontología de la Universidad Complutense de Madrid.

Además de la universidad madrileña, en el trabajo también han participado el Instituto de Ciencias de la Tierra Jaume Almera, del CSIC, la Universidad de Cádiz y el Centro Europeo de Astronomía Espacial.

“Las fallas inversas que hemos localizado en la superficie de Ceres indican que este cuerpo es más complejo de lo esperado, ya que presenta rasgos intermedios entre satélite helado y planeta rocoso”, afirma Isabel Egea González, investigadora de la Universidad de Cádiz.

Para llevar a cabo el estudio, los científicos han analizado las imágenes de más detalle de la superficie de Ceres tomadas por la sonda Dawn de la NASA desde la órbita más cercana, para obtener la mayor resolución posible.

Las imágenes obtenidas se integraron en un sistema de información geográfica junto con un modelo digital del terreno. Así, los investigadores consiguieron identificar y caracterizar este tipo de estructuras asociadas a la compresión.

“También hemos comparado la localización de todas las estructuras identificadas con la distribución, el número y el tamaño de los cráteres conservados en la superficie de Ceres. Estos nos han permitido inferir que el origen de estas fallas fue un proceso que ha perdurado durante gran parte de la historia de Ceres”, añade Alberto Jiménez Díaz, del Instituto de Ciencias de la Tierra Jaume Almera.

El siguiente paso, concluye el geólogo de la Universidad Complutense de Madrid, sería, además de investigar las características de las fallas para profundizar sobre la composición del planeta enano, “comparar nuestros hallazgos con las predicciones de los modelos teóricos sobre la evolución de la contracción/expansión de Ceres”.

Referencia científica:

Javier Ruiz, Alberto Jiménez-Díaz, Federico Mansilla, Laura M. Parro, Isabel Egea-González y Michael Küppers. Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy. DOI: 10.1038/s41550-019-0803-2