
 

1. Introduction 

1.1. General motivation 
Nowadays it is widely accepted that the functioning of complex systems [1] depends on 

dynamical processes taking place between the interacting entities of networked structures, which 

are well described by mathematical models based on discrete systems, such as graphs and 

networks [2-5]. Diffusion is a ubiquitous physical driver of many of these dynamics, ranging from 

the flow of information in social networks, transport in infrastructural systems, epidemic 

spreading processes, and the synchronization of biological, social or technological entities [6-8]. 

A general assumption of the diffusive dynamics on discrete systems is conservativeness. That is, 

it is assumed that the total amount of diffusing items is conserved along the time at the entities of 

the system. For instance, let us consider an intercellular proximity network (see [9]) 

in which the vertices  represent cells in an epithelium tissue and its edges represent the 

proximity (via a Voronoi diagram) between cells (see Fig. 1 (a)). It is well known that ions and 

large molecules diffuse rather freely from one epithelial cell to another [10] but does not diffuse 

along the intercellular space to the exterior. This is because the permeability of the junctional 

surfaces of the cell membranes is very high, but the nonjunctional surfaces and intercellular spaces 

represent strong diffusion barriers. If we represent the concentration of ions/molecules on the 

epithelial cells (vertices of the graph) at initial time to be the column vector 𝒖0, the 

conservativeness of the process is expressed by the fact that 𝟏𝑇𝒖(𝑡) = 𝟏𝑇𝒖0, for any time 𝑡, 

where 𝒖(𝑡) is the vector of concentrations at the nodes of the graph at time 𝑡 and 𝟏 is a column 

vector of ones. 

 

Fig. 1. (a) Illustration a portion of epithelial tissue (top panel) and its graph representation (bottom 

panel), where the conservative diffusion of ions and molecules occur. (b) Example of 

nonconservative dynamics consisting of neurotransmitters (NT) being spilled over between two 

neurons due to the so-called volume transmission through the extracellular milieu. (c) The 

nonconservative traffic flow of cars in a city where the number of cars at intersection A is not 

necessarily the same as those at intersection B due to the emergence/sinking of cars from parking 

spaces.      



The same assumption can be assumed (and it is typically assumed (see for instance [11])) for the 

synaptic interaction between two neurons. However, this is not necessarily the case for the 

chemical synapses where the so-called volume transmission (VT) is well-documented [12-16]. In 

this case some concentrations of neurotransmitter are spilled over the extracellular fluid filling 

channels of the extracellular space and the cerebrospinal fluid filling ventricular space and sub-

arachnoidal space (Fig. 1 (b)). Then, it is no longer true that 𝟏𝑇𝒖(𝑡) = 𝟏𝑇𝒖0, and the process is 

nonconservative. Another example of nonconservative diffusion occurs when urban traffic is 

accounted by the number of cars flowing from the intersections of an urban street network as 

illustrated in Fig. 1 (c). The no-conservativeness of this diffusion surges from the fact that cars 

may emerge/disappear due to parking spaces located at street legs. More examples of 

nonconservative diffusion include the communication in social media [17-19] like Twitter where 

a user can post a message who can be read by her followers, but also (if not constrained by the 

user) by non-followers, all of whom can retweet such information to others. Also, in a food web 

[20] when one species A (predator) predates another species B (prey) there is a mass transfer from 

B to A, but if A utilizes only a portion of the material and free energy originally in B, which is 

then retained in the predator, the resulting process is a non-conservative one. Such mass and 

energy can then be diffused across the food web in a non-conservative diffusive way. 

The qualitative differences between conservative and nonconservative diffusion are schematically 

represented in Fig. 2 where 𝑁𝑡 is the total number of particles at the vertices of the graph at time 

𝑡. 

  

Fig. 2. Differences between conservative (1) and nonconservative (2 and 3) diffusive processes 

in a graph.  

 

1.2. Nonconservative (NC) diffusion on graphs 
Conservative diffusion is described by the “classical” diffusion equation: �̇�(𝑡) = −𝐿𝒖(𝑡) [4, 21], 

with initial condition 𝒖(0) = 𝒖0, where 𝐿 is the standard graph Laplacian (see later for 

definition). Its time evolution is characterized by the existence of a steady state in which 

𝒖(𝑡 → ∞) =
1

𝑛(𝟏𝑇𝒖0)
. That is, the state of the nodes converges to the average of their initial states 

in a consensual way (see Fig. 3 top-left panel).  



A direct consequence of the fact that 𝟏𝑇𝒖(𝑡) ≠ 𝟏𝑇𝒖0 in a nonconservative diffusion is that the 

system does not reach a steady state in which 𝒖(𝑡 → ∞) =
1

𝑛(𝟏𝑇𝒖0)
, but instead the states of the 

nodes can diverge (Fig. 3 top-right panel), stabilize at certain values which are smaller than the 

initial ones (Fig. 3 bottom-left panel) or vanish (Fig. 3 bottom-right panel). 

 

Fig. 3. Differences in the time evolution of a conservative (top-left) and nonconservative (the 

three other panels) diffusive processes in a network.  

 

A way to describe NC diffusion on graphs is by considering  �̇�(𝑡) = −𝐿𝜒𝒖(𝑡), with initial 

condition 𝒖(0) = 𝒖0, where 𝐿𝜒 ≔ 𝜒𝐼 − 𝐴 is the Lerman-Ghosh Laplacian [22] of the graph, 

where 𝜒 ≥ 0 is an empirical parameter. Then, we can prove the following. 

Lemma 1. Let �̇�(𝑡) = −𝐿𝜒𝒖(𝑡), 𝒖(0) = 𝒖0, where 𝐿𝜒 ≔ 𝜒𝐼 − 𝐴, and let 𝜆1 > 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be 

the eigenvalues of 𝐴 for a connected, simple graph. Then, 

𝐥𝐢𝐦
𝒕→∞

𝒖(𝑡) =

{
 
 

 
 (𝝍1

𝑇𝒖0)𝝍1𝑒
𝑡(𝜆1−𝜒) = ∞    for 𝜒 < 𝜆1,

(𝝍1∑ 𝑢0(𝑗)𝜓1(𝑗)
𝑗

)         for 𝜒 = 𝜆1,

(𝝍1
𝑇𝒖0)𝝍1𝑒

−𝑡(𝜒−𝜆1) = 0   for 𝜒 > 𝜆1.

 

The case when 𝜒 = 𝜆1 is a very specific one and its solution is trivial, and the final state depends 

on the so-called eigenvector centrality of the graph. The case when 𝜒 < 𝜆1 seems unrealistic from 

a real-world perspective as the “concentration” of items at the vertices of the graph growth to 

infinite. The last case, when 𝜒 > 𝜆1, may represent some realistic scenarios in which the vertices 

of a graph get empty by discharging their content to the environment. However, these three 

scenarios do not describe realistically cases of interest from a complex systems perspective like 



the ones mentioned before, i.e., volume transmission in synapses, urban traffic, diffusion of 

information via social media, etc.  

 

Therefore, in this section of the project we propose to consider reaction-diffusion models, where 

we allow that the vertices create or annihilate items to avoid that their concentrations go to zero 

or to infinity: 

�̇�(𝑡) = −𝐿𝜒𝒖(𝑡) + 𝑓(𝒖(𝑡)). 

Then, although the diffusive dynamics considered by the previous equation is non-conservative, 

it reaches a steady state in which the concentration at every vertex in the graph is the same as 

illustrated in the Fig. 4. The details of this part of the project are given in the next section. 

 
Fig. 4. Illustration of the time evolution of a NC process controlled by a reaction-diffusion model 

where the concentration of items at the vertices of the graph (the same as in Fig. 3) reach a steady 

state.  

 

1.3. Spatial nonlocality in NC diffusion  
There are complex system scenarios in which the diffusion of items occurs not only via the 

interaction among nearest neighbours. One example is provided by the volume transmission of 

NT among neurons during synapses [13-16]. The volume transmission (VT) has been defined as 

[13] “a diffuse mode of intercellular communication affecting and modulating the activity of 

entire brain regions”. This mode of diffusion differs significantly from the wiring transmission 

where there is [13] “a virtual wire connecting the cell source of the signal (message) with the cell 

target of the signal.” In the VT, a NT can be spilled over from one neuron, then navigate via 

blood vessels or the cerebrospinal fluid and being recaptured by a target neuron which is not 

wirily connected with the source of this transmission (see Fig. 5). From the perspective of the 

vertices of a graph what happen in this process is the following. Items located at a given vertex 𝑖 

of the graph are spilled over outside the graph like in any nonconservative process. Then, these 

items are not only recaptured at the nearest neighbors of vertex 𝑖 (the nonconservative process 

described in the previous subsection), but also by vertices which are at certain topological distance 

from it (a spatial nonlocal process).  



 

Fig. 5. Illustration of the volume transmission of NT via blood vessels and/or cerebrospinal fluid 

between distant neurons. 

 

A realistic assumption for these spatial nonlocal processes is to consider that the chances of an 

item to hop from one vertex 𝑖 to another vertex 𝑗 of the graph decays with the topological 

separation between the two vertices. In the case of urban traffic, for instance, standard diffusive 

models assume that cars stop at every intersection, which correspond to hopping between nearest 

neighbour vertices of the urban street network. A nonlocal approach to this dynamic will assume 

that cars not necessarily stop at every intersection but that can go two, three, etc., streets without 

stopping with chances of going too far without stopping being heavily penalized. Other scenarios, 

like the diffusion of information through social media can also easily adapted to this general 

scenario. 

In the case of conservative diffusion there are two approaches to describe these spatial nonlocal 

processes on graphs. On one hand, our group has generalised the concept of graph Laplacian by 

introducing the 𝑑-path Laplacians [23-26], which captures long-distance hops in graphs. By 

means of the transformation (Mellin, Laplace, etc.) of these operators we modulate the decay of 

the chances of hopping between vertices at given topological distance. On the other hand, 

physicists Riascos and Mateos [27, 28] proposed the use of fractional powers of the graph 

Laplacian, which is a positive-semidefinite matrix as a spatial nonlocal operator. For a comparison 

of both approaches see [29]. 

In this section of the project, we propose to introduce spatial nonlocal effects on NC diffusion on 

graphs. We will consider the case of dynamics described by: �̇�(𝑡) = −�̃�𝜒𝒖(𝑡),  for the sake of 

generality, but we will mainly focus on the study of the reaction-diffusion models of the type: 

�̇�(𝑡) = −�̃�𝜒𝒖(𝑡) + 𝑓(𝒖(𝑡)). Here, �̃�𝜒 represents the transformed 𝑑-path Lerman-Ghosh 

Laplacian of the graph, which will be formally defined in this project, e.g., �̃�𝜒 ≔

∑ 𝑑−𝑠(𝜒𝐼 − 𝐴𝑑)
𝑑𝑖𝑎𝑚
𝑑=1 , where 𝐴𝑑 are the d-path adjacency operators (see further). The fact that 𝐿𝜒 

may not be positive (semi)definite, for instance when 𝜒 < 𝜆1(𝐴), the fractional powers of this 

matrix may not exist, may not be unique in case of existing, and are complex when they exist. 

This invalidates the possibilities of using Riascos-Mateos approach of fractional powers of the 

NC Laplacian and left only the possibility of extending the NC Laplacian of Lerman-Ghosh to 

cases of 𝑑-path NC Laplacians and their transformations, which will be the focus of this section 

of the project. 



1.4. Temporal nonlocality in NC diffusion 
A characteristic feature of complex systems is the existence of certain memory about the past. 

That is when we consider the time evolution of the NC diffusion: �̇�(𝑡) = −𝐿𝜒𝒖(𝑡), 𝒖(0) = 𝒖0 

at the time instant 𝑎 we simply do not consider the temporal trajectory of �̇�(𝑡 < 𝑎). That is, we 

consider that the system has no memory about its part. A way to introduce the memory of the 

system about past is to consider a weighted sum of the values of �̇�(𝑡 ≤ 𝑎) such that we give more 

weight to the present, i.e., 𝑡 = 𝑎, than to the past, 𝑡 < 𝑎. This is schematically represented in Fig. 

6 (see [30]), where the weighted sum is replaced by the integral from time 0 to 𝑎, of the product 

of �̇�(𝑡) and the weights 𝜗(𝑡), which increases as 𝑡 → 𝑎. 

 

Fig. 6. Illustration of consideration of “memory” in the temporal evolution of a dynamics. 

 

In this section of the project, we will consider the replacement of the memoryless derivative �̇�(𝑡) 
by the fractional Caputo derivative [31-33],  

 

𝐷𝑡
𝛼𝒖(𝑡) ≔ {

1

Γ(1 − 𝛼)
∫
�̇�(𝜏)𝑑𝜏

(𝑡 − 𝜏)𝛼
    0 < 𝛼 < 1,

𝑡

0

�̇�(𝜏)              𝛼 = 1,

 

where 𝜗(𝑡) =
1

Γ(1−𝛼)(𝑡−𝜏)𝛼
. 

 

Therefore, our focus in this section is the study of the temporal nonlocal NC diffusion equations 

of the type: 

 

𝐷𝑡
𝛼𝒖(𝑡) = −𝐿𝜒𝒖(𝑡) + 𝑓(𝒖(𝑡)), 𝒖(0) =  𝒖0, 

with and without the reactive part, 𝑓(𝒖(𝑡)). 

In particular, we will investigate the solutions of these equations in terms of the Mittag-Leffler 

matrix functions [34, 35] of 𝐿𝜒: 

𝐸𝛼(𝐿𝜒) ≔ ∑
(𝐿𝜒)

𝑘

Γ(𝛼𝑘 + 1)

∞

𝑘=0

 

where Γ is the Euler gamma function.  

 



1.5. Time-and-space nonlocal NC diffusion 
In the case of conservative diffusion, we have previously considered a generalised model that 

accounts simultaneously for time and space nonlocal effects [36]: 

𝐷𝑡
𝛼𝒖(𝑡) = −(∑ 𝑑−𝑠𝐿𝑑

𝑑𝑖𝑎𝑚

𝑑=1
)𝒖(𝑡), 𝒖(0) =  𝒖0, 

where 𝑑 is the shortest path distance between pairs of vertices, 𝑠 > 0 is the strength of the long-

range jumps and 𝐿𝑑 is the 𝑑-path Laplacian matrix. Using this model, we have proved that the 

conservative diffusion on graphs can give rise to sub-diffusive, normal and super-diffusive 

behaviour depending on the parameters 𝑠 and 𝛼 selected for a given type of graph as illustrated 

schematically in Fig. 7. 

 

Fig. 7. Schematic representation of the different kinds of diffusion that emerge on a graph with 

the time-and-space generalised conservative diffusion model.  

 

Therefore, tis part of the project will consist of the generalization of the NC diffusion equation to 

account simultaneously for time (through the time-fractional Caputo derivative) and space 

(through the transformed 𝑑-path Lerman-Ghosh Laplacians): 

𝐷𝑡
𝛼𝒖(𝑡) = −�̃�𝜒𝒖(𝑡) + 𝑓(𝒖(𝑡)), 𝒖(0) =  𝒖0. 

We will consider the purely diffusive process, i.e., without 𝑓(𝒖(𝑡)), and with such term. In the 

first case, we are interested in the analysis of the solution: 

𝒖(𝑡) = −𝐸𝛼(�̃�𝜒) 𝒖0, 

and the determination of conditions for anomalous diffusion (sub- and super-diffusion), if they 

exist. In the case of reaction-diffusion models we will consider a logistic model (see further) 

whose solution is expressible in terms of the two-parameters Mittag-Leffler function: 

𝐸𝛼,𝛽(�̃�𝜒) ≔ ∑
(∑ 𝑑−𝑠(𝜒𝐼 − 𝐴𝑑)

𝑑𝑖𝑎𝑚
𝑑=1  )

𝑘

Γ(𝛼𝑘 + 𝛽)
,    

∞

𝑘=0

 

where we will be again interested in the analysis of the diffusive processes giving rise in terms of 

the parameters s and 𝛼. 



1.6. Geometry of nonlocal NC diffusion 
An important and desirable characteristic of the analysis of diffusive models on graphs/networks 

is to detect the most probable trajectories of the diffusive particles across the vertices and edges 

of 𝐺. For long time it was assumed that “information” flows through shortest (topological) paths 

in systems like the brain (see for instance [37]), where the lack of global information about its 

global structure makes such navigation impossible. Nowadays, alternative ways of navigation are 

studied for the communication between different vertices of networks, particularly in brain 

networks [38-40]. The topic is not new, think for instance on the effective resistance of an 

electrical network [41], which was proved 20 years ago to be a squared Euclidean distance 

between the vertices of a graph [42]. The resistance distance is directly related to the commute 

time of a random walker navigating the graph [43-45], which make it an attractive metric. 

Unfortunately, as proved by von Luxburg et al. [46], in large graphs, commute distance converges 

to an expression that does not consider the structure of the graph at all and that it is completely 

meaningless as a distance function on the graph. 

 

Once a distance is defined on the graph it is possible to find the geodesic paths connecting pairs 

of vertices based on it [47, 48]. In this way we can, for instance, obtain the most probable 

trajectory of a random walker navigating between two vertices of the graph via a graph 

geometrization based on the resistance distance. In the last ten years our group has developed a 

new circum-Euclidean distance between the pairs of vertices of a graph known as the 

communicability distance [49-57], which allows to detect the shortest communicability paths in 

a graph, i.e., the most probable paths used by particles in a NC diffusion on the graph (see [55, 

58]). Let us define the hitting time as the time (number of steps) that a random walker, departing 

from 𝑝, takes to hit by the first time the node 𝑞 and the excess time as the time (number of steps) 

taken by a random walker, departing from 𝑝, to arrive at 𝑞 in comparison with a ballistic walk. 

Then, if we consider the graph illustrated in Fig. 8, we can see that the shortest topological path 

(𝑃1) is not the most probable trajectory for a random walker as provided by the hitting and excess 

times. In this case, 𝑃1 is also the shortest resistance path. However, the shortest communicability 

path coincides with the one having the least excess and hitting times. These results have been 

confirmed for a real-world network representing 638 brain regions in humans in which the 

communicability shortest paths have always provided least excess time than the shortest 

topological one [58]. 

 

Therefore, in this section of the project our focus will be in extending the concept 

communicability distance and communicability shortest paths to the cases in which the NC 

diffusion considers time-and-space nonlocal effects. This implies that we will extend the 

definition of communicability distance to other matrix functions beyond the exponential, i.e., 

Mittag-Leffler matrix functions, as well as beyond the simple adjacency matrix to consider 

matrices of the form: ∑ 𝑑−𝑠𝐴𝑑
𝑑𝑖𝑎𝑚
𝑑=1  as will be described further in this project. 

 

 𝑃1 𝑃2 

Excess time 2.7 1.38 

Hitting time 10.9 6.9 

Shortest topological path 3 4 

Shortest resistance path 2.15 3.38 

Shortest communicability path 5.09 4.80 

Fig. 8. A simple graph in which two different paths (𝑃1 and 𝑃2) between the vertices 𝑝 and 𝑞 are 

considered. We give the values of the excess and hitting times between the two vertices after 

1,000 random realizations. Additionally, we report the values of the length of the shortest 

topological, resistance and communicability paths. 



 

2. OBJECTIVES 

2.1. General 

The main goal of this project is to develop a general mathematical theory for the study of NC 

diffusion dynamics on graphs/networks. Although NC diffusion has been previously studied on 

graphs it has not been sufficiently developed as to occupy the important place it should have in 

the analysis of complex systems. This general goal will be fulfilled by studying a reaction-

diffusion logistic model on graphs. Although this dynamic is NC, it reaches an equilibrium steady 

state in which the concentration of items at the nodes neither diverges nor vanishes. We will then 

generalise these NC diffusion models to account for time-and-space nonlocal effects. The spatial 

nonlocality will be introduced by means of a generalisation of the adjacency operator of graphs 

to transformed 𝑑-path adjacency operators. Such transformations will be implemented to account 

for the decay of spatial nonlocality with the inter-vertex separation in the graph. The temporal 

nonlocality will be implemented by replacing standard derivatives by time-fractional Caputo 

derivatives in the NC diffusive models. Finally, we will also consider the geometries induced by 

these nonlocal NC diffusion dynamics and analyse the most probable trajectories of diffusive 

particles via geometrization of the graphs. As a general objective we will focus on integrating all 

these results for the analysis of small graphs, as well as large real-world networks. 

2.2.  Specific objectives 

i. Propose a reaction-diffusion logistic model on graphs, finds analytically its exact solution 

and propose bounds to it, which allow its approximate solution for graphs and networks 

of relatively large sizes; 

ii. Implementing spatial non-local interactions on NC diffusion on graphs. Studying the 

main mathematical properties of these generalised operators in (one-dimensional) infinite 

graphs, i.e., self-adjointness, boundness. Studying analytically the existence or not of 

super-diffusive behaviour for transforms (Laplace, factorial and Mellin) of these 

generalised operators in one-dimensional infinite graphs. Studying the main 

characteristics of the spatially nonlocal NC diffusive processes on real-world networks 

using these generalised operators; 

iii. Implementing temporal non-local interactions on NC diffusion on graphs via Caputo 

fractional derivative. Studying the main mathematical properties of the solution of this 

model to check the existence or not of sub-diffusive behaviour. Studying the main 

characteristics of the temporal nonlocal NC diffusive processes on real-world networks 

using these generalised operators; 

iv. Generalising the NC diffusive model to account simultaneously for time-and-space 

nonlocality. Finding general conditions for the existence of normal, sub- and super-

diffusion on graphs under this model, and studying it in realistic networked scenarios; 

v. Defining and analysing the geometries induced by the time-propagation operators 

generated in the solution of the time-and-space nonlocal NC diffusion models. Studying 

the general properties of the induced embedding, i.e., circum-Euclideanness, as well as 

defining and studying parameters like distances, angles spanned by position vectors, etc.; 

vi. Defining and analysing the most probable “trajectories” of items when diffusing non-

conservatively and nonlocally on a graph by means of geometrizations of the graphs 

based on the previously defined metrics; 

vii. Integrate the previous objectives into a generalised theoretical framework in which the 

NC diffusion plays a central role in dynamical processes on complex systems. 

  



3. METHODOLOGY AND WORKING PLAN 

Let 𝐺 = (𝑉, 𝐸) be  a simple, undirected graph. Let ℋ ≔ ℓ2(𝑉) be the Hilbert space of square-

summable functions on 𝑉 and let 𝑓 ∈  ℋ  be a function. Then [59, 60], 

(𝒜𝑓)(𝑣) ≔ ∑

𝑤∈𝑉: (𝑣,𝑤)∈𝐸

𝑓(𝑤),         

is the adjacency operator of 𝐺. If 𝐺 is an infinite locally finite graph then 𝒜 is a bounded 

selfadjoint operator on ℋ. The degree operator on 𝐺 is defined as 

(𝒦𝑓)(𝑣) ≔ 𝑘𝑣𝑓(𝑣),         

where 𝑘𝑣 is the degree of 𝑣. The Laplacian operator on 𝐺 is defined as [59, 60], 

(ℒ𝑓)(𝑣) ≔ ∑

𝑤∈𝑉: (𝑣,𝑤)∈𝐸

(𝑓(𝑣) − 𝑓(𝑤)),        

which is a bounded selfadjoint operator on ℋ when the graph is infinite and locally finite. In finite 

graphs the three operators are realised by the corresponding adjacency, degree and Laplacian 

matrices: 𝐴,𝐾, 𝐿. The Laplacian operator can be expressed as 

(ℒ𝑓)(𝑣) = (𝒦𝑓)(𝑣) − (𝒜𝑓)(𝑣), 

which in matrix form is: 𝐿 = 𝐾 − 𝐴. 

In 2012 Lerman and Ghosh [22] proposed the following Laplacian matrix for a graph: : 𝐿𝜒 =

𝜒𝐼 − 𝐴, where 𝐼 is the identity matrix and 𝜒 ≥ 0  is an empirical parameter. We can write this 

matrix in operator form as 

(ℒ𝜒𝑓)(𝑣) = ∑

𝑤∈𝑉: (𝑣,𝑤)∈𝐸

(
𝜒

𝑘𝑣
𝑓(𝑣) − 𝑓(𝑤)). 

The Abstract Cauchy Problem for the diffusion of potentials on the graph 𝐺 is expressed by  

𝑑𝒖(𝑡)

𝑑𝑡
= �̇�(𝑡) = −ℳ𝒖(𝑡),        𝒖(0) = 𝒖0, 

where ℳ is either 𝐿 or 𝐿𝜒, 𝒖(𝑡) is the vector of potentials, e.g., concentrations, densities, 

opinions, etc.  

The conservative nature of the process �̇�(𝑡) = −𝐿𝒖(𝑡) can be proved by considering its solution: 

𝒖(𝑡) = 𝑒−𝑡𝐿𝒖0, and taking its Taylor series expansion: 𝟏𝑇𝒖(𝑡) = 𝟏𝑇𝑒−𝑡𝐿𝒖0 = 𝟏
𝑇𝒖0 −

𝑡𝟏𝑇𝐿𝒖0 +
𝑡2

2!
𝟏𝑇𝐿2𝒖0 +⋯. Then, because 𝐿 is positive semidefinite, 𝟏𝑇𝐿 = 0 and so 

(𝟏𝑇𝐿)𝐿𝑘−1 = 0. Thus, 𝟏𝑇𝒖(𝑡) = 𝟏𝑇𝒖0  for any 𝑡. The nonconservativeness of the process �̇�(𝑡) =

−𝐿𝜒𝒖(𝑡) is proved by Lemma 1. Notice that this process may be conservative only in the special 

case when 𝜒 = 𝜆1 and 𝒖0 = 𝝍1. 



 

 

3.1. Logistic NC diffusion on graphs/networks 
 

Participants: Ernesto Estrada (IFISC), PhD candidate  

In this section of the project we propose the study of the following reaction-diffusion model with 

NC diffusion as controlled by the Lerman-Ghosh Laplacian: 

�̇�(𝑡) = −𝛾𝐿𝜒𝒖(𝑡) + 𝑓(𝒖(𝑡)),    𝒖(0) = 𝒖0 

where 𝛾 is the diffusivity coefficient. This model can be considered in the class of general 

reaction-diffusion models of the kind: �̇�(𝑡) = −𝛾𝐿𝒖(𝑡) + 𝑓(𝒖(𝑡)). A well-known model of this 

type is the Fisher-Kolmogorov-Petrovsky-Piskunov one [61, 62]. We propose to consider here 

the model in which 𝛾 = 1, and 0 ≤ 𝒖0(𝑖) < 1. Also, because the graphs considered here are never 

the trivial one (edgeless graph), we always have that 𝜆1 > 0, so that by setting 𝜒 = 0 we always 

guarantee the condition that 0 = 𝜒 < 𝜆1.  

Then, we will consider that that a fraction of the concentration increased at the vertex 𝑖 is removed 

from the node. Because 𝒖0(𝑖) < 1 we consider that the fraction to be removed is equal to 

𝒖𝑡(𝑖) multiplied by the amount in which the concentration has increased:  

�̇�𝑖(𝑡) = ∑ 𝐴𝑖𝑗𝑢𝑗(𝑡) − 𝑢𝑖(𝑡) ∑ 𝐴𝑖𝑗𝑢𝑗(𝑡)

(𝑗,𝑖)∈𝐸(𝑗,𝑖)∈𝐸

 

which obviously represents the logistic equation on the graph: 

�̇�𝑖(𝑡) = (1 − 𝑢𝑖(𝑡)) ∑ 𝐴𝑖𝑗𝑢𝑗(𝑡)

(𝑗,𝑖)∈𝐸

. 

Our first goal here is to find approximate solutions by means of tight bounds of this equation on 

graphs rewritten in the following way (see [63]): 

�̇�𝑖(𝑡)

1 − 𝑢𝑖(𝑡)
= ∑ 𝐴𝑖𝑗 (1 − 𝑒

−(− log(1−𝑢𝑗(𝑡))))
(𝑗,𝑖)∈𝐸

, 

which can be written as  
𝑑𝒚(𝑡)

𝑑𝑡
= ∑ 𝐴𝑖𝑗𝑓 (𝑦𝑗(𝑡))(𝑗,𝑖)∈𝐸 , where 𝑦𝑖(𝑡) ≔ − log (1 − 𝑢𝑗(𝑡)) ∈

[0,∞], 𝑓(𝑦) ≔ 1 − 𝑒−𝑦. Our concrete proposal is to obtain an upper bound to a linearised version 

of this equation which represents a good approximate solution of the logistic reaction-

diffusion model considered here.  

Based on our preliminary explorations of the problem we propose the following: 

Working Plan 

1. Use a linearisation of the form: 
𝑑�̂�(𝑡)

𝑑𝑡
= 𝐴diag(𝟏 − 𝒖0)�̂�(𝑡) + 𝑏(𝒖0), where �̂�(𝑡) =

𝑓(�̂�(𝑡)) approximates 𝒖(𝑡).  

2. Obtain the exact solution of the linearised logistic NC reaction-diffusion model and 

analyse the initial conditions on which the solution can be simplified without removing 

its physical meaning. 



3. Analyse numerically how good the approximation obtained is to the exact solution of the 

model for different types of graphs/networks, studying the influence of several factors 

like degree heterogeneity, degree assortativity, existence of communities, etc. 

4. Considering analytically the matrix functions emerging from the solution of the linearised 

problem under certain initial conditions. For instance, some of the solutions are related to 

matrix functions known as 𝜓-matrix functions, which are particular cases of the two-

values Mittag-Leffler functions of a matrix 𝑀 of the type: 𝐸1,2(𝑀) =
𝑒𝑀−𝐼

𝑀
. 

5. Compare the NC logistic model with conservative models of diffusion for the propagation 

of information on graphs/networks, by considering different types of topologies, in order 

to determine whether the NC diffusion displays advantages in terms of the speed of 

propagation in relation to conservative processes. 

3.2. Spatial nonlocality in NC diffusion on graphs/networks 
 

Participants: Ernesto Estrada (IFISC), PhD candidate  

In this section of the project we will start by defining two new nonlocal operators on graphs. Let 

us first define the 𝑑-path degree of a vertex 𝑣 as 𝑘𝑑,𝑣 ≔ #{𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 𝑑}, where 𝑑(𝑣, 𝑤) is 

the shortest path distance between the two vertices in 𝐺. Then, the 𝑑-path adjacency operator on 

the graph is defined as: 

(𝒜𝑑𝑓)(𝑣) ≔ ∑

𝑤∈𝑉: 𝑑(𝑣,𝑤)=𝑑

𝑓(𝑤).         

In a similar way we extend the Lerman-Ghosh Laplacian operator to the 𝑑-path one:  

(ℒ𝑑,𝜒𝑓)(𝑣) = ∑

𝑤∈𝑉: 𝑑(𝑣,𝑤)=𝑑

(
𝜒

𝑘𝑑,𝑣
𝑓(𝑣) − 𝑓(𝑤)). 

Let us now consider the following transformations of these operators. Let 𝑑𝑖𝑎𝑚 =

max
𝑣,𝑤∈𝑉

𝑑(𝑣,𝑤) be the diameter of the graph. Then, 

ℒ̃𝜒,𝜁 ≔ ∑ 𝑒−𝜁𝑑ℒ𝑑,𝜒
𝑑𝑖𝑎𝑚
𝑑=1     and ℒ̃𝜒,𝑠 ≔ ∑ 𝑑−𝑠ℒ𝑑,𝜒

𝑑𝑖𝑎𝑚
𝑑=1 , 

are the Laplace- and Mellin-transformed 𝑑-path Lerman-Ghosh Laplacian operators with 𝜁 >

0  and 𝑠 > 0, respectively. Notice that when 𝜒 = 0 these operators are transformed into the 

Laplace- and Mellin-transformed 𝑑-path adjacency operators of the graph.  

Working Plan 

1. Investigate the general properties of the operators 𝒜𝑑, 𝒜𝑑,{𝜁,𝑠}, ℒ𝑑,𝜒, and ℒ̃𝜒,{𝜁,𝑠} on the 

basis of their boundedness and self-adjointness. In the case of the corresponding matrices 

we will focus on the analysis of their eigenvalues, particularly of the spectral radius of 

𝐴𝑑 , �̃�{𝜁,𝑠} and on the algebraic connectivity (second smallest eigenvalue) of 𝐿𝑑,𝜒, and 

�̃�𝜒,{𝜁,𝑠}, for which we are interested in finding bounds  based on simple graphs properties, 

such as the number of vertices, edges, maximum and minimum degree, etc. 

2. Generalise the NC diffusion model by considering the spatially nonlocal Lerman-Ghosh 

Laplacians: �̇�(𝑡) = −�̃�𝜒,𝜁  𝒖(𝑡) and  �̇�(𝑡) = −�̃�𝜒,𝑠 𝒖(𝑡), proving their convergence in 

connected graphs, and the role played by 𝜇2(�̃�𝜒,{𝜁,𝑠}) = min
𝜇𝑗≠0

𝜇j(�̃�𝜒,{𝜁,𝑠}) in determining 

the rate of convergence of these processes. 



3. Study computationally the main characteristic features of the spatially nonlocal NC 

diffusion models on an infinite linear chain to determine analytically whether there are 

conditions in which the process become super-diffusive, e.g., which transform (Mellin or 

Laplace) and which range on parameters on the corresponding transform. 

4. Generalise the logistic NC diffusive model to consider spatial nonlocality via: �̇�(𝑡) =

(1 − 𝒖(𝑡))�̃�{𝜁,𝑠}𝒖(𝑡). Study the conditions needed to transform the model into linearised 

approximations of the form: 
𝑑�̂�(𝑡)

𝑑𝑡
= �̃�{𝜁,𝑠}diag(𝟏 − 𝒖0)�̂�(𝑡) + 𝑏(𝒖0), where �̂�(𝑡) =

𝑓(�̂�(𝑡)) approximates 𝒖(𝑡). Then, analyse computationally the rate of convergence of 

this model to the steady state and compare it with the one without nonlocal spatial effects.  

5. Study the NC diffusion models with spatial nonlocality on real-world networks, in 

particular to analyse diffusive processes in neuronal networks of different species, e.g., 

C. elegans, D. melanogaster, mouse and human, as well as to consider traffic in urban 

street networks at rush hours. 

 

3.3. Temporal nonlocality in NC diffusion on graphs/networks 
 

Participants: Ernesto Estrada (IFISC), PhD candidate  

In this section of the project we will start by analysing a temporal nonlocal NC diffusion model 

with the Lerman-Ghosh Laplacian: 

𝐷𝑡
𝛼𝒖(𝑡) = −𝐿𝜒𝒖(𝑡), 𝒖(0) =  𝒖0, 

where 𝐷𝑡
𝛼𝒖(𝑡) is the Caputo fractional derivative previously defined. The solution of this equation 

is given in terms of the Mittag-Leffler matrix functions −𝐸𝛼(𝐿𝜒): 

𝒖(𝑡) = −𝐸𝛼(𝐿𝜒) 𝒖0, 

We then proceed to define and study temporally nonlocal logistic NC diffusion models of the 

type: 

𝐷𝑡
𝛼𝒖(𝑡) = (1 − 𝒖(𝑡))𝐴𝒖(𝑡), 𝒖(0) =  𝒖0. 

Working Plan 

1. Proving the convergence conditions of the model 𝐷𝑡
𝛼𝒖(𝑡) = −𝐿𝜒𝒖(𝑡) and compare them 

with the ones obtained for the standard NC model, particularly by considering the 

influence of the fractional parameter 𝛼 on the rate of convergence. 

2. Prove whether the fractional NC diffusive model can give rise to sub-diffusive behaviour 

on graphs using an infinite linear chain. Show the conditions, in terms of the parameter 

𝛼, which change the behaviour of the system from normally diffucive to sub-diffusive. 

3. Investigate the spectral properties of the Mittag-Leffler matrix functions of the Lerman-

Ghosh Laplacian 𝐸𝛼(𝐿𝜒). Then, obtaine analogous of Lemma 1 in which we find 

𝐥𝐢𝐦
𝒕→∞

𝒖(𝑡) as a function of 𝜒 and the spectra of 𝐸𝛼(𝐿𝜒). 

4. Study the conditions needed to transform the logistic fractional NC diffusion model into 

linearised approximations of the form: 𝐷𝑡
𝛼𝒖(𝑡) = 𝐴diag(𝟏 − 𝒖0)�̂�(𝑡) + 𝑏(𝒖0), where 

�̂�(𝑡) = 𝑓(�̂�(𝑡)) approximates 𝒖(𝑡). Then, analyse computationally the rate of 

convergence of this model to the steady state and compare it with the one without 

nonlocal spatial effects.  



5. Study the NC diffusion models with temporal nonlocality on real-world networks, in 

particular to analyse diffusive processes in neuronal networks of different species, e.g., 

C. elegans, D. melanogaster, mouse and human, as well as to consider traffic in urban 

street networks at rush hours. 

3.4. Time-and-space nonlocal NC diffusion on graphs/networks 
 

Participants: Ernesto Estrada (IFISC), PhD candidate  

The main goal of this section of the project is to generalise NC diffusion to include simultaneously 

time and space nonlocality via fractional time derivatives and transformed 𝑑-path Lerman-Ghosh 

Laplacians, respectively: 

𝐷𝑡
𝛼𝒖(𝑡) = −�̃�𝜒,{𝜁,𝑠} 𝒖(𝑡), 𝒖(0) =  𝒖0, 

whose solution is of the form: 

𝒖(𝑡) = −𝐸𝛼(�̃�𝜒,{𝜁,𝑠} ) 𝒖0, 

for the Laplace (𝜁) and Mellin (𝑠) transformations, respectively. 

We will also study here a spatial and temporally nonlocal logistic NC diffusion models of the 

type: 

𝐷𝑡
𝛼𝒖(𝑡) = (1 − 𝒖(𝑡))𝐴{𝜁,𝑠}𝒖(𝑡), 𝒖(0) =  𝒖0, 

where 𝐴{𝜁,𝑠} are the Laplace and Mellin transformed 𝑑-path adjacency matrices of the graph, 

respectively. 

Working Plan 

1. Proving the convergence conditions of the model 𝐷𝑡
𝛼𝒖(𝑡) = −�̃�𝜒,{𝜁,𝑠} 𝒖(𝑡),  and find the 

combined conditions which transform the process from normal diffusion to sub- and 

super-diffusion. 

2. Study the conditions needed to transform the time-and-space nonlocal logistic NC 

diffusion model into linearised approximations of the form: 𝐷𝑡
𝛼𝒖(𝑡) = 𝐴{𝜁,𝑠}diag(𝟏 −

𝒖0)�̂�(𝑡) + 𝑏(𝒖0), where �̂�(𝑡) = 𝑓(�̂�(𝑡)) approximates 𝒖(𝑡). Then, analyse 

computationally the rate of convergence of this model to the steady state and compare it 

with the one without nonlocal spatial effects.  

3. Study the NC diffusion models with temporal and spatial nonlocality on real-world 

networks, in particular to analyse diffusive processes in neuronal networks of different 

species, e.g., C. elegans, D. melanogaster, mouse and human, as well as to consider traffic 

in urban street networks at rush hours. 

 

3.5. Geometry of generalised NC diffusions on graphs/networks 
 

Participants: Ernesto Estrada (IFISC), PhD candidate  

In the standard NC diffusion model with the Lerman-Ghosh Laplacian the solution is given in 

terms of the semigroup 𝑒−𝑡𝐿𝜒. Thus, at a given time the potential at a given pair of vertices is: 



𝑢𝑡(𝑣) = ∑ (𝑒−𝑡𝐿𝜒)
𝑣𝑗
𝑢0𝑗 (𝑗) and 𝑢𝑡(𝑤) = ∑ (𝑒−𝑡𝐿𝜒)

𝑤𝑗
𝑢0𝑗 (𝑗). Then, if we consider the flow 

between the two vertices when the initial potential was at vertex 𝑣, we have: 

ℱ𝑣𝑤|𝑢0(𝑗)=𝛿𝑗𝑣(𝑡) = 𝑢𝑣|𝑢0(𝑗)=𝛿𝑗𝑣(𝑡) − 𝑢𝑤|𝑢0(𝑗)=𝛿𝑗𝑣(𝑡), 

and the other way around, 

ℱ𝑤𝑣|𝑢0(𝑗)=𝛿𝑗𝑤(𝑡) = 𝑢𝑤|𝑢0(𝑗)=𝛿𝑗𝑤(𝑡) − 𝑢𝑣|𝑢0(𝑗)=𝛿𝑗𝑤(𝑡). 

Consequently, the “traffic” in both directions between the pairs of vertices 𝑣 and 𝑤 is given by: 

𝒟𝑣𝑤(𝐿𝜒, 𝑡) ≔ ℱ𝑣𝑤|𝑢0(𝑗)=𝛿𝑗𝑣(𝑡) + ℱ𝑤𝑣|𝑢0(𝑗)=𝛿𝑗𝑤(𝑡) = (𝑒
−𝑡𝐿𝜒)

𝑣𝑣
+ (𝑒−𝑡𝐿𝜒)

𝑤𝑤
− 2(𝑒−𝑡𝐿𝜒)

𝑣𝑤
. 

Proposition 2. 𝒟𝑣𝑤(𝑡) is a square circum-Euclidean distance between the vertices 𝑣 and 𝑤 of the 

graph. 

Also, because 𝑒−𝑡𝐿𝜒 = 𝑒−𝑡𝜒𝑒𝑡𝐴 we have that. 

𝒟𝑣𝑤(𝐿𝜒, 𝑡) = 𝑒
−𝑡𝜒[(𝑒𝑡𝐴)𝑣𝑣 + (𝑒

𝑡𝐴)𝑤𝑤 − 2(𝑒
𝑡𝐴)𝑣𝑤], 

where the term in the brackets is the communicability distance. 

Working Plan 

1. Define and study the properties of the circum-Euclidean distance 𝒟𝑣𝑤(�̃�𝜒,{𝜁,𝑠}, 𝑡) =

𝑒−𝑡𝜒 [(𝑒𝑡𝐴{𝜁,𝑠})
𝑣𝑣
+ (𝑒𝑡𝐴{𝜁,𝑠})

𝑤𝑤
− 2(𝑒𝑡𝐴{𝜁,𝑠})

𝑣𝑤
] emerging from the solution of the 

spetially nonlocal NC diffusion model. 

2. Study the circum-Euclidean embedding of the graphs induced by 𝒟𝑣𝑤(�̃�𝜒,{𝜁,𝑠}, 𝑡) by 

defining and studying the radius of the hypersphere where the embedding takes place, the 

angles between the position vectors of the vertices on the surface of the hypersphere and 

other geometric parameters. 

3. Study the geometrization of graphs based on 𝒟𝑣𝑤(�̃�𝜒,{𝜁,𝑠}, 𝑡) and study the trajectories of 

diffusive particles between origin-destination pairs based on the corresponding shortest 

paths. Compare them with the ones produced by NC diffusion without space nonlocality 

as well as with conservative diffusion. 

4. Define and study the properties of distances of the form: ℰ𝑣𝑤(𝐴, 𝑡): = (𝐸𝛼(𝐴))𝑣𝑣 +

(𝐸𝛼(𝐴))𝑤𝑤 − 2(𝐸𝛼
(𝐴))

𝑣𝑤
, which emerge in the solution of temporal nonlocal NC 

diffusion on graphs. Analyse the conditions determining that the embedding induced by 

these distances is circum-Euclidean and study properties of it, such as angles between 

position vectors, radius of hyperspheres, etc. 

5. Define and study the properties of distances of the form: ℰ𝑣𝑤(𝐴{𝜁,𝑠}, 𝑡):=

(𝐸𝛼(𝐴{𝜁,𝑠}))
𝑣𝑣
+ (𝐸𝛼(𝐴{𝜁,𝑠}))

𝑤𝑤
− 2(𝐸𝛼(𝐴{𝜁,𝑠}))

𝑣𝑤
, which emerge in the solution of 

time-and-space nonlocal NC diffusion on graphs. Analyse the conditions determining that 

the embedding induced by these distances is circum-Euclidean and study properties of it, 

such as angles between position vectors, radius of hyperspheres, etc. 

6. Study the geometrization of graphs based on ℰ𝑣𝑤(𝐴{𝜁,𝑠}, 𝑡) and study the trajectories of 

diffusive particles between origin-destination pairs based on the corresponding shortest 

paths. Compare them with the ones produced by NC diffusion without space, and time 

nonlocality as well as with conservative diffusion. 

7. Study the geometries induced by time-and-space nonlocal NC diffusion models on real-

world networks, in particular to analyse diffusive processes in neuronal networks of 



different species, e.g., C. elegans, D. melanogaster, mouse and human, as well as to 

consider traffic in urban street networks at rush hours. 
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IMPACTO ESPERADO DE LOS RESULTADOS - EXPECTED RESULTS IMPACT 

 

This project has two major areas of scientific impact. The first is logically in the mathematical 

study of graphs and networks in general and in the study of algebraic theory of graphs. The second 

is in the areas of applications of graphs and networks to the study of complex systems. The 

Laplacian operator of the graph is one of the most studied algebraic objects in graph theory. Its 

importance is that it contains great structural information about the graph. For example, the 

algebraic properties of the Laplacian are related to the number of spanning trees in the graph, to 

its connectivity, to its isoperimetric and expansion properties, to the random walker model in the 

graph, to the speed of convergence of diffusive dynamics, to the synchronizability of a network 



of oscillators, among others. In the study of complex networks, the Laplacian plays a vital role in 

the understanding of diffusion, synchronization, consensus protocols in autonomous systems, 

controllability of networks, pattern formation, signal processing, detection of communities and 

the analysis of electrical networks, among many others. It is worth noting that diffusion and 

synchronization are processes that occur in molecular, neuronal and cellular networks, in social 

systems, in ecological systems, between financial and infrastructure entities. 

 

The introduction of the hubs-repelling/attracting Laplacian operators proposed in this project will 

therefore have a direct impact on the understanding of the structural properties of graphs and how 

they affect the dynamics that occur in them. There is experimental evidence that shows the 

possible existence of diffusive processes with hubs-repulsion in real systems. An example is the 

diffusion processes in the brain, where the energy cost increases with the connectivity of the node, 

so diffusive particles would avoid the nodes of greater degree. Another example is the propagation 

of flight delays in air transport networks, where the most connected airports have a better capacity 

to absorb such delays, which would accumulate mostly in smaller airports. With the mathematical 

tools to be developed in this project, these scenarios and many others, can be studied both 

analytically and through computer simulations for their better understanding. 

 

To reach the widest possible audience during the project, we will disseminate our results in both 

specialized journals and high-impact interdisciplinary journals. All this information will be 

available in the form of open access material. We will promote the project by participating in 

specialized conferences and workshops on the subject, as well as in the main conferences of 

applied mathematics and complex networks. 

 

All previous dissemination processes will help achieve the expected impact of the project by 

providing long-term links to users in Spain and Europe. Fundamentally, in this project we will 

have a wide network of external collaborators who will help convince the international scientific 

community of the importance and need for a wide use of our theoretical tools. 

 

Specifically, the dissemination of the results of this project includes several aspects: 

o Publication in regular journals and assistance to scientific conferences; 

o Collaborations with other groups as mentioned in the memory; 

o Disseminating our results through the media; 

o Dissemination on personal web page. 

 

1. CAPACIDAD FORMATIVA  

TRAINING CAPACITY 

 

1.1. Programa de formación previsto en el contexto del proyecto solicitado. Training 

program planned in the context of the requested project  

 

1.2. Tesis realizadas o en curso en el ámbito del equipo de investigación (últimos 10 

años). Theses completed or in progress within the scope of the research team (last 

10 years). 

 

Period Name Thesis title 



2012-2015 Eusebio Vargas Estrada Leader-follower consensus under peer-pressure in 

complex networks 

2015-2018 Matthew Sheerin Random rectangular networks: theory and 

applications 

2016-2019 Ehsan Mejeed Hameed Mathematical analysis of 𝑑-path Laplacian operators 

in simple graphs. 

2016-2019 Grant Russell Silver Matrix function analysis of graphs and networks. 

2017-2022 Alhanouf A. Alhomaidhi Spectral folding and related matrix functions for 

graph/network analysis 

 

1.2. Theses in progress in the group 

Period Name Thesis title 

2021-2024 Fernando Diaz Diaz Estudio de redes con signos y sus aplicaciones. 

2021-2024 Manuel Miranda Dinámicas difusivas y advectivas en grafos y redes. 

 

6.3 Professional development of Doctors graduated in our group 

The first graduated Doctor from our group was Dr. Santiago Vilar who after having positions as 

researcher at National Institute of Diabetes and Digestive and Kidney Diseases at the National 

Institutes of Health (USA) and at the Department of Biomedical Informatics at Columbia 

University (New York, USA) is currently a Computational Chemist at Polaris, in Durham, USA. 

The second graduated Doctor was Dr. Frack Kalala-Mutombo, who is currently Academic 

Manager at the African Institute of Mathematical Sciences (AIMS) in Senegal.  The third one, 

Dr. Eusebio Vargas-Estrada, after graduation from our group held a Research Assistant position 

at the University of Konstanz, Germany, with Prof. Ulrik Brandes, and as Professor at the 

Pontificia Universidad Católica de Valparaiso in Chile is now Professor at the prestigious 

Tecnológico de Monterrey in Mexico. After graduation Dr. Matthew Sheerin took a position as 

Software Engineer at Metaswitch Networks in Edinburgh, U.K. Dr. Grant Silver is nowadays 

Senior Project Analyst at Quick Release (Automotive) Ltd in Greater Glasgow Area, U. K. Dr. 

Ehsan Majeed Hameed returned to Iraq where he holds a position as Professor at the University 

of Thi-Qar. After her graduation Dr. Alhanouf Ali Alhomaidhi (female) is currently Assistant 

Professor at King Saud University in Riyadh, Saudi Arabia.  

6.4 Scientific and formative capacity of the team and institution 
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