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New toolbox for pest and disease management
Every sector of the agriculture-related industry looks for strategies to get away from

using hazardous chemicals, and the consumer demands eco-friendly products.

Growers who can deliver an utterly chemical-free product with sustainable quality

will have an edge in the market. Therefore, biological pest control is reasonably

acceptable, but the constraint is to obtain well-understood and best products to be

effective on a field scale. Thus, the demand for a new toolbox for pest and disease

management is inevitable.

Current agricultural context: food losses in fields and postharvest
supply chain

Within the framework of the 2030 Agenda of the United Nations, one of the note-

worthy Sustainable development goals (SDGs) is ensuring an adequate food supply

chain for a growing population while conserving natural resources. Farmers’ losses

represent between 60% and 80% (depending on different estimation methodologies)

of total value chain losses (Delgado et al., 2017; Sagar et al., 2018). The leading

causes of preharvest reduction in crop yields on the farm include infestation by pests

and diseases (Jacometti et al., 2010), which might be exacerbated by the drought

increased by global warming. Fungal diseases are also responsible for postharvest

food decay (Delgado et al., 2017). The damage caused by insects and mites ranges

from 8% to 23% in the United States, inflicting a loss between 5% and 15% from a

total of $US 200 billion in revenue each year (Balog et al., 2017). The effects on

nonindustrialized countries are even worse due to both the direct losses (pests and

climate) and the indirect drivers, such as market prices or the quality of public
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services (including, for example, road infrastructure or other social services) (FAO,

2019). In addition, invasive pests represent new threats and challenges as global

trade expands and climatic conditions shift. Recent estimates suggest that the crop

yield losses caused by invasive pests will increase to 25% in the European Union

(EU) by 2080 (Balog et al., 2017).

The end of chemical synthetic pesticides management

Industrialized agriculture model production has used plants protection products

(PPPs), chiefly chemical synthetic pesticides, to protect crops from several pests

and diseases and maintain the highest standards of food production rates (Therond

et al., 2017). Indeed, “feeding the world” is a common rationale for the overuse

of agrochemicals and insurance-based pest management approaches in crop protec-

tion. However, because of their known ability to cause much adverse health and

environmental effects, it is more evident than ever that society needs the implemen-

tation of a new agricultural concept based on a more sustainable and ecological

approach (Damalas, 2009; Nicolopoulou-Stamati et al., 2016). This urgent need

has produced many innovative ideas, including agricultural reforms based on agro-

ecological principles (Wezel et al., 2020) and the redesign of the food supply chain,

reducing inefficient practices (Krishnan et al., 2020). Scientific research, integrated

pest management (IPM) technology, and farmer education to halt or drastically

reduce our overreliance on systemic agrochemicals globally are crucial steps to

achieving the SDGs (Chai et al., 2021; Pecenka et al., 2021; Veres et al., 2020).

Options to reduce food losses while protecting the environment

During the last decade, the trends set by Agroecology have expanded from the field,

farm, and agroecosystem scale to encompass the whole food system. Nowadays,

there is a consensus about the necessity of new agriculture techniques based on prin-

ciples of Agroecology to end the environmental degradation and loss of biodiversity

(Therond et al., 2017). Within principles of Agroecology, Wezel et al. (2020) estab-

lish that future agriculture has to improve the care of soil health and biodiversity and

reduce or eliminate dependency on purchased inputs. In recent years, agroecological

approaches have also gained prominence in scientific, agricultural, and political

discourse. Many countries worldwide are adopting regulations to implement these

ecologically-friendly and sustainable approaches. For example, the EU has been

working around the Integrated Pest Management policy step by step and is

increasing the measures inside the European Green Deal (Barzman et al., 2015;

Pecenka et al., 2021). The IPM is a central organizing principle to guide pesticide

use based on “a use-as-needed approach”: optimizing pesticide inputs, preventing

overuse via practices such as scouting with applications dictated by a range of pa-

rameters, including economic thresholds, heat unit accumulations, and historical

data (Barzman et al., 2015; Pecenka et al., 2021). Legislation is also increasingly

restrictive with agrochemicals in the cropping systems. In the same line, for
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example, EU Directive 2009/128/EC “Sustainable use of plant protection products”

marks that in Sustainable Agriculture, preventive or indirect control measures are

the first choice, with direct control only applied when the rest of the measures are

not adequate, and implementing actions that are selective to the target organism

(EU, 2009).

Similarly, the Regulation (EU) 2015/408 has proposed a chemical substitution

list currently used in industrialized agriculture, motivating the development of

new physical, chemical, and biological control methods as alternatives to pesticides

(EU, 2015). Beyond social lobby and scientific reports arguing against the use of

synthetic pesticides, on-farm pest and diseases elimination programs are today often

based on a combination of nonchemical and chemical control methods (Damalas,

2009) and, in many cases, are still managed with inertia toward “intelligent pesticide

management” (Nicholls, 2010). Despite the sector’s wishes, the complete elimina-

tion of agrochemicals is still not achievable.

Specific toolbox: biopesticides

Developing diverse pest control strategies that include safe products and practices

inside an ecologically-based framework requires a specific toolbox for farmers, opti-

mizing sustainable production, environmental quality, and human health. In recent

decades, biopesticides are one of these tools promoted in pest management as

possible alternatives to synthetic pesticides. Their definition by US Environmental

Protection Agency is the following: (1) naturally occurring substances that control

pests (biochemical pesticides), (2) microorganisms that control pests (microbial pes-

ticides), and (3) pesticidal substances produced by plants that contain added genetic

material (plant-incorporated protectants, PIPs) (Seiber et al., 2014). The PPP include

synthetic PPPs and biopesticides in the European Union. All PPPs contain at least

one active substance/ingredient and often contain components such as safeners,

coformulants, adjuvants, and synergists (Scheepmaker et al., 2019). The European

meaning of biopesticides is products derived from a biological origin and distin-

guishes only two categories: biological control products (homologous of US

biochemical pesticides) and microbial biological control agents (homologous of

US microbial pesticides), but do not recognize PIPs as biopesticides. Indeed, the reg-

ulatory European framework legislation on genetically modified food and feed is the

strictest worldwide (EU, 2003). Currently, biopesticides comprise a small share

(w5%) of the total crop protection market globally, valued at $3 billion in 2015

(Damalas and Koutroubas, 2018). Biopesticides use steadily increases 10% every

year (Kumar and Singh, 2015). More than 200 products had been sold in the US

market, compared to only 60 comparable products in the EU due to its lengthy,

expensive, and cumbersome approval procedures of biopesticides in comparison

with the rest of the World (Balog et al., 2017; Damalas and Koutroubas, 2018;

Scheepmaker et al., 2019).

Biopesticides can be used in organic and conventional farming and enhance

agoecological systems. Compounds derived from natural sources (plant, animal,

bacterial, algae, or fungal origins) have the potential to be used for food safety
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and crop protection due to their antimicrobial properties against a broad range of

pathogens and pests (Gyawali and Ibrahim, 2014). About 90% of the microbial bio-

pesticides derive from the single bacterium Bacillus thuringiensis (Bt) and several

B. thuringiensis subspecies (Lacey et al., 2015). These bacterial species produce

insecticidal proteins during the sporulation phase as parasporal crystals (also called

d-endotoxins), predominantly comprising one or more proteins (Cry and Cyt toxins),

disrupting the insect gut when ingested. These toxins, completely biodegradable, are

highly specific to their target insects but innocuous to humans, vertebrates, and

plants (Bravo et al., 2007). Therefore, Bt has become a viable alternative for control-

ling insect pests in agriculture. The live microbe form is an effective microbial pesti-

cide. Purified toxins from this strain are the most widely used biochemical pesticide,

and the DNA encoding the Bt toxin makes a powerful PIP. Currently, approximately

75% of all biopesticide use consists of Bt-based products. This microorganism dom-

inates the current biopesticide landscape, but emerging approaches are poised to

capture additional market share, thanks mainly to emerging resistance to Bt-based

biopesticide products (Heckel, 2021).

Future biopesticides have to explore beyond Bt and go deeper in search of new

natural sources of new entomopathogenic biotools. The development, use, and

future directions of insect-specific viruses, bacteria, fungi, and nematodes as compo-

nents of integrated pest management strategies for controlling arthropod pests of

crops are fundamental for ensuring global food supply (Lacey et al., 2015). Another

possibility is enhancing Bt by synergism with other biomolecules or beneficial

microorganisms (Jung and Kim, 2006, 2007; Park et al., 2016). This chapter

provides an overview of the beneficial functions of the entomopathogenic bacteria,

Xenorhabdus and Photorhabdus, explaining the current knowledge of their biology

to understand the many valuable properties that these bacteria can give in the pest/

diseases management for crop protection (Fig. 5.1).

Biology of Xenorhabdus and Photorhabdus soil
microorganisms: potential biofactory for novel compounds
The soil microbiome drives numerous vital/beneficial ecosystem functions and ser-

vices, such as primary production, carbon sequestration, and nutrient mineralization

(Thakur and Geisen, 2019). The structure and function of the soil microbiome

depend on the interactive effects among associated-plant inputs, trophic regulations,

and abiotic variables present in the soil. Several studies have focused on the soil

microbiomeeplant association for a wide range of microorganisms and plant spe-

cies. Many beneficial free-living microorganisms are part of the functional biodiver-

sity in the rhizosphere. Beneficial microorganisms can protect plants from pests or

enhance their diseases resistance (e.g., induced systemic resistance, ISR) and abiotic

stress tolerance. Entomopathogenic bacteria are beneficial microorganisms wide-

spread in nature and include mainly members of the genera Bacillus, Paenibacillus,
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FIGURE 5.1

Illustration of possible scopes of mode use, mode of application, and mode of action of Xenorhabdus and Photorhabdus bacteria-based

products.
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Brevibacillus, Serratia, Pseudomonas, Xenorhabdus, or Photorhabdus (Glare et al.,

2017). Entomopathogenic bacteria can be obligate or facultative arthropod patho-

gens and display different host ranges and mechanisms of infection. They all have

similar abilities to produce a vast diversity of natural antibiotic products to overcome

insect immune responses and host-microbiota (Gyawali and Ibrahim, 2014). Insect

pathogenic (entomopathogenic) bacteria of the genera Photorhabdus (ffrench-

Constant et al., 2007; Waterfield et al., 2004) and Xenorhabdus (Sergeant et al.,

2003), which have been described as secondary metabolite producers, are becoming

a potential novel source of biopesticides. Overall, Xenorhabdus and Photorhabdus

are soil Gram-negative g-Proteobacteria belonging to the family Morganellaceae

(Adeolu et al., 2016). They have a mutualistic symbiosis stage with nematodes of

the genera Steinernema and Heterorhabditis, respectively, and an entomopathogenic

stage. The classification system of entomopathogenic nematode microsymbionts has

recently recognized 26 species of the genus Xenorhabdus and 19 species of the

genus Photorhabdus (Machado et al., 2018; Sajnaga and Kazimierczak, 2020).

Despite their similar lifestyle and close phylogenetic origin (Tailliez et al., 2010),

Xenorhabdus and Photorhabdus bacterial species differ significantly in the nema-

tode host range, symbiotic strategies for parasite success, and arrays of released an-

tibiotics and insecticidal toxins (Bode, 2009). The nonfeeding entomopathogenic

nematode (EPN) state, free-living infective juvenile (IJ), stays in the soil and carries

their associated microbiota (Ogier et al., 2020; Stock, 2015). The nematodes in the

genus Steinernema carry, among other microorganisms, mutualistic Xenorhabdus

bacteria in a specialized vesicle named “the receptacle,” placed in the anterior

part of the gut. However, Heterorhabditis nematodes, which do not have such a

specialized structure, use their intestinal lumen to harbor Photorhabdus until they

find insect larvae to infection (Boemare, 2002). Then, the EPNs release the bacteria

into the hemocoel through defecation or regurgitation (Boemare, 2002). Bacteria in

the genera Xenorhabdus and Photorhabdus respond to environmental change by the

existence of two phenotypically different forms. This phenotypic switching occurs

in a small proportion of cells, so a sizable clonal population is probably never genet-

ically homogeneous. Both bacteria stages synthesize numerous specialized metabo-

lites that have roles in symbiosis and pathogenicity (Neubacher et al., 2020; Tobias

et al., 2017). Thus, despite changes in growth conditions that can suddenly occur,

some cells always express the phenotype needed for survival (Forst et al., 1997).

Along with the insect infection, Xenorhabdus and Photorhabdus primary variant

cells exhibit a reversible change from (1) Mutualistic-form (M-form) characterized

to be able to support nematode reproduction and colonization initiation in the infec-

tive juvenile (IJ) stage nematode to (2) Pathogenic-form (P-form) characterized by

their virulence properties (Forst et al., 1997; Somvanshi et al., 2012). Cao and

Goodrich-Blair (2020) reported that this shift occurs reciprocally depending on

levels of leucine-responsive regulatory protein (Lrp) in Xenorhabdus nematophila

within the receptacles of the EPN species Steinernema carpocapsae. Thus, high

and low levels of Lrp expression imply higher ratios ofM and P forms, respectively.

The primary variant cell (M-form or P-form) occurs between the inside of the EPN

and the insect host’s hemocoel. Besides, the species in the genus Photorhabdus have
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a putative free life cycle with a secondary cell variant living in the rhizosphere

(Boemare and Akhurst, 1988; Eckstein et al., 2021; Forst et al., 1997). Primary

and secondary cell variants are genetically identical, and epigenetic switching is still

puzzling (Fig. 5.2). Researching these bacteria’s role and function in the rhizosphere

might help produce interesting novel compounds.

Once inside the host, the primary bacterial variant in M-form changes by a

reversible promoter into P-form (Forst et al., 1997), which is bigger and faster-

growing and starts to produce a wide range of specialized metabolites derived

from nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS)

(Tobias et al., 2017). These natural products secreted within the hemocoel overcome

the host’s immune response targeting different proteases involved in the insect im-

mune response, for example, phospholipase A2 intermediate in cellular and humoral

immune response in insects (Ahmed and Kim, 2018; Darsouei and Karimi, 2018;

Mollah and Kim, 2020; Shi and Bode, 2018). These specific metabolites induce

the host’s death within 48e72 h after the EPN penetration. Then, Xenorhabdus

and Photorhabdus natural products cause rapid changes in their biotic and abiotic

environments. The cadaver decomposition processes provide nutrients into an envi-

ronment with a flourishing microbial community, the host microbiota. When the

nutrient plume spreads through the soil, it deserves its name: the cadaver decompo-

sition island (CDI). Interspecific microbial communities, mainly opportunistic bac-

teria and fungi, compete for nutrients and shape a cadaver’s microbial community

composition, influencing other ecologically or biogeographically essential events,

such as immigration or dispersal of community members. Understanding microbial

interactions overall, including those in cadaver communities, may address questions

at many research scales, including ecological theories about competition and trophic

regulations in soil microbiome (Blanco-Pérez et al., 2017; Thakur and Geisen,

2019). In addition, the EPNs need time and the maintenance of proper conditions

within the hemocoel to complete their life cycle. Before a new IJ offspring emerges,

the nematode-killed host remains in the soil for 7e15 days or longer, at risk of other

soil opportunistic microbiome. In this context, Xenorhabdus and Photorhabdus have

developed a defense mechanism through scavenger deterrence based on specific

deterrent factors (e.g., volatile organic compounds) (Gulcu et al., 2012; Shi and

Bode, 2018; Ulug et al., 2014) to protect de CDI from another opportunistic coloni-

zation (Jaffuel et al., 2022; Karthik Raja et al., 2021; Lulamba et al., 2021). The deep

knowledge about the wide range of metabolite production in Xenorhabdus and Pho-

torhabdus species is crucial for metabolomics engineering and allows researchers to

get attention to natural product with commercial relevance. Some of these com-

pounds attracted substantial interest for biosanitary (Booysen and Dicks, 2020;

Da Silva et al., 2020; ffrench-Constant et al., 2007) and agricultural purposes

(Eroglu et al., 2019; Vicente-Dı́ez et al., 2021b). Since the death of the host insect,

EPNs develop their life cycle, feeding on their partner bacteria and host tissues until

the resources deplete. Next, the second-stage juveniles develop to the IJ stage, incor-

porate some of the symbiont bacteria and exit the CDI by thousands into the soil to

begin a new life cycle (Fig. 5.2).
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FIGURE 5.2

Model of life cycle of the entomopathogenic Heterorhabditis-Photorhabdusecomplex belowground. (1) Entomopathogenic nematode (EPN)

infection. During the infective juvenile stage (IJs), Heterohabditis spp. localize a host and release their symbiotic bacteria into the hemocoel

completing the infection. (2) Photorhabdus Primary variant. TheMutualistic-form (M-form) of bacteria switching by a reversible promoter from

an M-form to a Pathogenic-form (P-form). The bacteria replicate and kill the insect by the production of toxins. Once death comes to the

insect, P-form is able to synthesize scavenger deterrent factors and different volatile organic compounds to control the scavengers. (3)

Photorhabdus Secondary variant. After the cadaver decomposition island (CDI) of the victim is metabolized by the bacteria, 20e50% of the

Primary variant cells switch to the Secondary variant phenotype. While the remaining M-form cells are reabsorbed by the nematodes.

Secondary variant cells and metabolites interact with plant roots and defend them from attack by phytopathogens. If the secondary variant

cells can convert back to primary variant cells is still unclear. (4) EPNs life cycle. EPNs develop their life cycle, feeding on their partner bacteria

and degraded host tissues until the resources deplete. Next, the second-stage juveniles develop to the IJ stage, incorporate some of the

symbiont bacteria (M-form), and exit by thousands into the soil to begin the life cycle anew.
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Xenorhabdus- and Photorhabdus-based products: aims and
scope
The development of antibiotic-resistant pathogens and the public concern about pes-

ticides’ toxicity and environmental impact promote novel biotechnological tools for

pest/diseases management (Arthurs and Dara, 2019; Raymaekers et al., 2020). Iden-

tifying biological control agents and products thus forms a critical step in developing

novel commercial biopesticides. Furthermore, their screening system has to differ-

entiate between direct antagonism (e.g., parasitism, antibiosis, or competition)

and biological agents or products that indirectly exert their action in the plant or

even in the fruit resistance to the diseases insects or decay attack. Several research

lines have targeted the entomopathogenic bacteria species in the genera Xenorhab-

dus and Photorhabdus during the last decades due to their potential in controlling the

broad range of pests and diseases and the plasticity in the use of their derived prod-

ucts (Vicente-Dı́ez et al., 2021a), the thermo-stability and shelf-life of their natural

products (Cimen et al., 2021; Hazir et al., 2018), and their human health safety

(Kusakabe et al., 2022). Researchers have proved their efficacy against insects

(ffrench-Constant et al., 2007; Vicente-Dı́ez et al., 2021b, 2021a; Vitta et al.,

2018), bacteria (Muangpat et al., 2020), mites (Bussaman et al., 2009, 2012; Cevizci

et al., 2020; Eroglu et al., 2019; Incedayi et al., 2021), fungi (Alforja et al., 2021;

Chacón-Orozco et al., 2020; Cimen et al., 2021; Fang et al., 2011, 2014; Li et al.,

2021), and root-knot nematodes (Abebew et al., 2022; Kepenekci et al., 2016;

Kusakabe et al., 2022; Sayedain et al., 2019). Their plasticity lets also use them

as biofactory of biochemical pesticides. Nevertheless, their isolated use as microbial

pesticides or genetics in the production of PPP has not been deeply studied yet.

A single strain of Xenorhabdus or Photorhabdus may produce a broad range of

antibiotic and insecticidal extracellular bioactive compounds (Dreyer et al., 2018).

When producing antibiotics, it has been known that biochemistry engineering con-

ditions are critical to the secondary metabolites production of microorganisms

(Jiang and Zengyi, 2011). Even small changes in the culture medium can alter the

quantities of certain compounds and modify the general metabolic profile of micro-

organisms, the microbial cellular networks, and fine-tuning physiological capabil-

ities. Thereby, the industry can develop viable strains for producing natural and

nonnatural value-added compounds. Different studies have enhanced the antibiotic

activity of Xenorhabdus spp. and Photorhabdus spp. and optimized different bacte-

rial strains. Factors such as environmental temperature, pH, rotatory speed, inocula-

tion concentration, medium volume flask, fermentation time, aeration, the batch, the

continuous stirred tank reactor, and other medium properties can condition the gene

expressions and increase the production of product of antimicrobial interest. For

example, Wang et al. (2011) tested the production of antibiotics of Xenorhabdus

bovieniiYL002 by medium optimization using response surface methodology. Their

results pointed out that an optimized medium by adding glycerol and soytone

increased antibiotic activity by 38%. However, previous one-factor-at-a-time assays
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with X. nematophila YL001 identified glucose and peptone as the best carbon and

nitrogen sources that significantly affected antibiotic production (Wang et al.,

2008). Recently, Booysen et al. (2021) suggested that the secondary metabolism

of X. khoisanae J194 may be regulated by oxygen, water activity, or both. The dis-

solved oxygen level, tested only for X. nematophila YL001, was optimal when

shifted during fermentation from 70% after the first 18 h to 50% for the remaining

54 h. Dreyer et al. (2018) and Booysen and Dicks (2020) summarized common

trends for all the studies resumed in pH from 6.0 to 8.24, temperature range of

25e32�C, rotary speed of 150e220 rpm, inoculation volume of 4%e15%, a me-

dium volume of 54e100 mL/250 mL flask, and a fermentation time of 54e72 h.

Keskes et al. (2021) investigated the optimization of the culture conditions for

enhancing Photorhabdus temperata biopesticide production using wastewater

(WS4) as raw material and proved its viability. In this line, and in the context of

the SDG, the research linking the production of biopesticides within a circular econ-

omy is very promising.

Once optimized the production of the bioactive compounds, the main possibil-

ities for formulations are as follows: the hole cell suspension as unfiltered ferment

(UF), the cell-free metabolites recovered in the supernatants (CFS), or the crude iso-

lated bacteria cells extracts (Fig. 5.3). Bussaman et al. (2012) compared the three

possibilities obtained from the fermentation of X. stokiae against the mushroom

mite (Luciaphorus sp.). They observed higher efficacies when using the cell-free su-

pernatants than the unfiltered ferment or the crude extract. Conversely, Vicente-Dı́ez

et al. (2021a) registered higher mortalities of Lobesia botrana when the UF

X. nematophila and P. laumondii were applied rather than with the CFS. Hence,

the use of the bacteria combined or not with their products are also candidates for

searching bio-tools. Most studies have employed CFS due to several practical advan-

tages: (1) homogeneous metabolites, (2) thermo-stability, and (3) longtime proper/

storage. Abd-Elgawad (2021) established a list of possible scopes of application

of the CFS of Photorhabdus spp. Spraying the CFS in the leaves has been proved

by Eroglu et al. (2019) as an acaricide against Tetranychus urticae. Similarly, the

cell-free filtrate of X. nematophila culture showed significant inhibitory effects

(90%) on mycelial growth on postharvest tomato pathogens when sprayed over

the fruits (Fang et al., 2014). Studies by Rajagopal et al. (2006) showed that

P. luminescens encapsulated in alginate beads could infect Spodoptera litura and

induce 100% mortality in 48 h.

Other possibilities could be employing the bacteria or their derivates as elicitors

(low molecular weight compounds that activate a signal cascade and trigger plant

immune response) or synergizing with other biopesticides. Indeed, the secondary

metabolites have been shown to complement the action of other biopesticides

such as B. thuringiensis (Jung and Kim, 2006; Park et al., 2016). However, even

if their use as elicitors could extend their action range in crop protection programs,

the required fundamental knowledge is still beyond comprehension.

Besides their straight use as toxic compounds, entomopathogenic bacteria pro-

duce chemical compound(s) that deter scavengers from feeding on nematode-
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FIGURE 5.3

Simplified schematic of in vitro production of bioactive compounds from Xenorhabdus spp. and Photorhabdus spp.
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killed insects. These scavenger deterrent factors play an essential role in the survival

and persistence of EPNs in soils, even if not all scavengers are affected by them

(Gulcu et al., 2012; Ulug et al., 2014). Compounds such as xenocoumacins (Shi

and Bode, 2018) and fabclavines (Fuchs et al., 2014; Wenski et al., 2020) are

well-known natural products that protect the insect cadaver from opportunists.

The fabclavines are hybrid secondary metabolites derived from NRPS, polyunsatu-

rated fatty acid, and PKS, which deserve special attention due to their potent mos-

quito feeding-deterrents activity (Kajla et al., 2019). There is diverse fabclavines

derivate from different Xenorhabdus strains, whose importance lies in their anti-

biotic abilities, as in the case of other compounds of low volatility, which can be

applied to suppress plant diseases (Chacón-Orozco et al., 2020). Many microbial

volatile organic compounds have been closely associated with insect feeding behav-

iors (Tasin et al., 2011), but some are also powerful repellants (Jaffuel et al., 2022).

In situ emissions from microorganisms may signal aspects of habitat suitability or

potential exposure to entomopathogens (Davis et al., 2013). Although their use is

today restricted to mosquito repellency (Da Silva et al., 2020; Kajla et al., 2019),

exploring their potential in crop protection could enhance the eco-friendly manage-

ment of pests and diseases.

Traditionally, EPN applications were the only strategy to utilize the pathogenic

capabilities of Xenorhabdus and Photorhabdus in biological control programs

(Askary and Abd-Elgawad, 2021). Their direct use as biocontrol agents represents

a great opportunity but faces critical impediments, mainly cost and reliability.

Although it has not been studied in-depth, some studies have addressed this issue.

Thus, according to Vicente-Dı́ez et al. (unpublished data), P. laumondii develops

antifungal activity against Botrytis cinerea but not X. nematophila. Similarly, Mohan

and Sabir (2005) observed that P. luminescens causes mortality of eggs of the para-

sitoid Trichogramma sp., and Rajagopal et al. (2006) assayed the direct infection of

Spodoptera litura by P. luminescens encapsulated in alginate beads. Their results

showed 100% mortality in 48 h by encapsulated P. luminescens, while the use of

alginate-encapsulated Heterorhabditis nematodes resulted in 40% mortality after

72 h.

Genetic engineering offers opportunities to develop insect-resistant plants by

inserting or expressing entomopathogenic proteins in planta. Several gene clusters

for secondary metabolite biosynthesis have been identified in genome sequences

of entomopathogenic bacteria (Bode, 2009). Specifically for Xenorhabdus and Pho-

torhabdus species, several new secondary metabolites have already been identified

that are currently isolated (Bode, 2009). In addition, the design and synthesis of

some plant-incorporated protectants have been completed. For example, Zhang

et al. (2012) expressed a nematode symbiotic bacterium-derived protease inhibitor

protein in tobacco, enhancing its tolerance against Myzus persicae. This study sug-

gested that the EPN-symbiotic bacterium complex is another valuable resource of

protease inhibitors to be engineered into plants for insect pest management. Despite

these advances, the mechanisms behind the production of PIPs by Xenorhabdus and

Photorhabdus are still poorly understood.
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Conclusions and future perspectives
The next-generation agriculture is avid of new approaches and products. Knowing

how soil organisms can contribute to maintaining productive and healthy crops is

crucial in the sustainable paradigm of current social demand. Some initiatives focus

their effort on exploring the best combination of several well-known beneficial soil

organisms, such as EPN, AMF, and Pseudomonas (Imperiali et al., 2017; Jaffuel

et al., 2019), but the discrepancies in their success highlight the necessity of a

comprehensive and holistic understanding of the complex agroecosystem. Similarly,

searching for new organisms with possible new action mechanisms or production

with novel active material is a must to provide alternatives to the dominated market

by Bt. The present overview of the status of research and application of the entomo-

pathogenic bacteria Xenorhabdus and Photorhabdus illustrates their vast potential

and the substantial limitation for the feasible released as commercial products

shortly. Besides the basic knowledge on which are the best species of these two bac-

teria for the production of certain active materials (Bode, 2009), still in the early

stage of accounting for the overall potential, the scale to commercial production re-

quires a deep investigation of the best conditions for their fermentation (production)

and formulation (commercial product). Finally, as demonstrated in the combination

of well-known biological control agents, fine-tuning for successful application to

their full potential will require years of study (probably decades) until it becomes

a reality. As learned from the findings and development of other bioproducts,

such as the Bt paradigm, the starting points are always complex and challenging.

However, the current research on the possibilities of Xenorhabdus and Photorhab-

dus is launched by various research programs worldwide, and the goal, driven by

the SDG, is clear and achievable in the medium term. Hence, we envision that the

bacteria Xenorhabdus and Photorhabdus will produce final commercial products

and successful applications in one or more of the approaches (Fig. 5.1), providing

novel tools for preserving future generations and protecting the Earth.
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ecological principles and elements and their implications for transitioning to sustainable

food systems. A review. Agronomy for Sustainable Development 40. https://doi.org/

10.1007/s13593-020-00646-z.

Zhang, H., Mao, J., Liu, F., Zeng, F., 2012. Expression of a nematode symbiotic bacterium-

derived protease inhibitor protein in tobacco enhanced tolerance against Myzus

persicae. Plant Cell Reports 31, 1981e1989. https://doi.org/10.1007/s00299-012-1310-4.

References 101

https://doi.org/10.4103/2221-1691.221134
https://doi.org/10.1016/j.biortech.2007.03.053
https://doi.org/10.1111/j.0307-6962.2004.00407.x
https://doi.org/10.3762/bjoc.16.84
https://doi.org/10.1007/s13593-020-00646-z
https://doi.org/10.1007/s13593-020-00646-z
https://doi.org/10.1007/s00299-012-1310-4

